## Review of the SERDS method



## Fluorescence is a problem for Raman measurements



- Fluorescence often dominates the signal in Raman measurements of real-world samples
- Presence of the fluorescence complicates Raman measurements and makes them inaccurate or even impossible
- Quantitative Raman measurements are particularly challenging in presence of the fluorescence
- Sources of fluorescence are often the contaminants or other minor constituents in the sample
- Fluorescence often arises in materials as they age (e.g. gasoline, explosives etc.)



## General description of SERDS



- Both fluorescence and the Raman signal are proportionate to the power of the excitation laser
- Fluorescence spectrum is independent of the wavelength of the excitation laser
- Raman spectrum is shifted from the excitation laser by the frequency of the Stokes shift
- If two spectra are collected in identical conditions using two lasers with slightly different wavelength the fluorescence contribution can be accurately subtracted



# Example: Raman spectra of a strongly fluorescent dye (R6G ) at 785 nm

Normalized spectra, not corrected for white light



Numerical filtering is required to analyze spectrum even with this amount of fluorescence



### SERDS spectra: R6G in water



- SERDS produces very clear and low noise derivative spectrum with no fluorescence remaining
- All required analysis can be performed using derivative spectra (e.g. identification and quantitative Raman)
- No reconstruction of Raman spectrum from its derivative is strictly necessary



## Orthogonality of SERDS spectra



- The graph shows dot products of SERDS spectra of various common materials
- Derivative spectra are highly orthogonal to each other
- SERDS spectra orthogonality makes Raman measurements simpler
- The non-orthogonal spectra reflect actual similarity in the molecular structure of the substances (e.g. Styrofoam, transparent polystyrene and xylenes)



## Quantitative Raman measurements in presence of strongly fluorescent background



## Raman spectrum of methanol with large amount of R6G dye

Sample 100% methanol & R6G. Uncorrected



- Raman/fluorescence ratio is < 1:100</p>
- Conventional Raman analysis is nearly impossible



## Comparison of SERDS with numerical filtering

SERDS spectrum vs derivative



**SERDS data have much less noise** 



### Measurement methodology

- Quantitative information was obtained without giving the system the *a priori* knowledge of the mixture constituents
- Components of the mixtures were recognized using the library SERDS spectra
- Collected SERDS spectra of the mixtures were then projected into the sub-space of the library spectra of the recognized pure components
- Predicted concentrations were based on the projection onto the spectra of the pure compounds
- Similar methodology was employed with derivative spectra



### Prediction of methanol concentration in two-part mixtures with ethanol in presence of R6G

Alcohol concentration prediction with R6G in solution



SERDS has ~ 3x better detection threshold for the minor constituent in the mixture compared with numerical filtering method



## Detection of contamination of ethanol with isopropanol in presence of R6G dye

#### Predicted concentration of IPA relative to Ethanol in mixtures



- Task: detect and quantify ethanol contamination with isopropanol
- IPA concentration measured accurately at ~ 5% level in both cases
- Fluorescence background did not prevent detection of the IPA contamination
- Signal to fluorescence ratio of > 1:100 results in measurement error of only 1% on 5%.
- Numerical derivative calculation method does not detect IPA in this case



### Laser source control: switching



Laser wavelength changes by < 5 pm peak-to-peak after laser turn on/ turn off cycle (TEC stays on)



## Possible Implementations of SERDS Sources



## Different implementation of SERDS sources

- Two separate stand-alone turn-key laser sources (integrated with laser diode driver and temperature controller) combined by an external combiner
- 2. Free-space collimated output laser combined in a single small housing
- A butterfly package with fiber-coupled or free-space output housing both laser chips and combined inside the package



### Option 1: two stand-alone turn-key laser sources





## Option 2: two free-space lasers combined in one housing



- Both lasers have collimated output
- The outputs are combined to be collinear and propagate along the same path => they will illuminate exactly the same area on a sample
- The package can be equipped with a photodiode to monitor the power of the lasers
- This package has no built-in thermoelectric coolers by default
- The concept shown here is based on lasers packaged in 9 mm TO cans
- Smaller diameter 5.6 mm TO cans can be used also for single mode lasers (<150 mW per laser)</li>



## Option 3: two laser diode chips in the same butterfly package





- Both lasers are combined inside the housing and coupled into the same fiber
- This package has a built-in thermoelectric cooler that controls both laser chips
- The package is equipped with a photodiode to monitor the power of the lasers
- □ Same size as a single laser
- Both lasers can be powered individually addressable
- Can be supplied in a butterfly package or as a turn-key stand-alone laser with all the electronics and drivers



## Summary of SERDS advantages

- SERDS method allows accurate and robust Raman measurements even when Raman signal is > 100 times weaker then the fluorescence background
- SERDS has ~ 3x better accuracy and detection limit of the numerical filtering methods
- SERDS analysis can be, and should be performed using the derivative spectra without reconstruction
- Using fixed wavelength sources, as opposed to tunable laser source, is more advantageous:
  - The wavelength difference is stable and always the same;
  - The sources are simpler to run and control
  - Two-source solution is both cheaper and more robust then a tunable laser source
- Switching of the laser sources can be done electronically

