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Review of the SERDS method
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Fluorescence is a problem for Raman
measurements

 Fluorescence often dominates
the signal in Raman
measurements of real-world
samples

 Presence of the fluorescence
complicates Raman
measurements and makes
them inaccurate or even
impossible

 Quantitative Raman
measurements are particularly
challenging in presence of the
fluorescence

 Sources of fluorescence are
often the contaminants or
other minor constituents in the
sample

 Fluorescence often arises in
materials as they age (e.g.
gasoline, explosives etc.)
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General description of SERDS

 Both fluorescence and the Raman
signal are proportionate to the
power of the excitation laser

 Fluorescence spectrum is
independent of the wavelength of
the excitation laser

 Raman spectrum is shifted from
the excitation laser by the
frequency of the Stokes shift

 If two spectra are collected in
identical conditions using two
lasers with slightly different
wavelength the fluorescence
contribution can be accurately
subtracted
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Example: Raman spectra of a strongly
fluorescent dye (R6G ) at 785 nm

Normalized spectra, not corrected for white light
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Numerical filtering is required to analyze spectrum even with this
amount of fluorescence
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SERDS spectra: R6G in water

 SERDS produces very
clear and low noise
derivative spectrum
with no fluorescence
remaining

 All required analysis
can be performed
using derivative
spectra (e.g.
identification and
quantitative Raman)

 No reconstruction of
Raman spectrum from
its derivative is strictly
necessary

Difference spectra
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Orthogonality of SERDS spectra

Xylenes and
ethylbenzene in
various forms of
polystyrene

SERDS
spectra are

nearly
orthogonal

 The graph shows dot
products of SERDS
spectra of various
common materials

 Derivative spectra are
highly orthogonal to
each other

 SERDS spectra
orthogonality makes
Raman measurements
simpler

 The non-orthogonal
spectra reflect actual
similarity in the
molecular structure of
the substances (e.g.
Styrofoam, transparent
polystyrene and
xylenes)
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Quantitative Raman measurements in
presence of strongly fluorescent

background
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Raman spectrum of methanol with large
amount of R6G dye

 Raman/fluorescence ratio is < 1:100

 Conventional Raman analysis is nearly impossible

Sample 100% methanol & R6G. Uncorrected
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Comparison of SERDS with numerical
filtering

SERDS spectrum vs derivative
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SERDS data have much less noise
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Measurement methodology

 Quantitative information was obtained without giving the system
the a priori knowledge of the mixture constituents

 Components of the mixtures were recognized using the library
SERDS spectra

 Collected SERDS spectra of the mixtures were then projected
into the sub-space of the library spectra of the recognized pure
components

 Predicted concentrations were based on the projection onto the
spectra of the pure compounds

 Similar methodology was employed with derivative spectra
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Prediction of methanol concentration in two-part
mixtures with ethanol in presence of R6G

Alcohol concentration prediction with R6G in solution
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SERDS has ~ 3x better detection threshold for the
minor constituent in the mixture compared with

numerical filtering method
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Detection of contamination of ethanol
with isopropanol in presence of R6G dye

 Task: detect and quantify
ethanol contamination with
isopropanol

 IPA concentration measured
accurately at ~ 5% level in
both cases

 Fluorescence background did
not prevent detection of the
IPA contamination

 Signal to fluorescence ratio of
> 1:100 results in
measurement error of only
1% on 5%.

 Numerical derivative
calculation method does not
detect IPA in this case
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Laser source control: switching

VBG-stabilized Laser Wavelength Stability After Turn-On
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Possible Implementations of SERDS
Sources
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Different implementation of SERDS
sources

1. Two separate stand-alone turn-key laser sources
(integrated with laser diode driver and temperature
controller) combined by an external combiner

2. Free-space collimated output laser combined in a
single small housing

3. A butterfly package with fiber-coupled or free-space
output housing both laser chips and combined inside
the package
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Option 1: two stand-alone turn-key
laser sources

 Based on the existing PD-
LD products

 Quick to implement, simple
to use

 Can be used with standard
Raman probes
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Option 2: two free-space lasers
combined in one housing

 Both lasers have collimated output

 The outputs are combined to be collinear and
propagate along the same path => they will
illuminate exactly the same area on a sample

 The package can be equipped with a photodiode
to monitor the power of the lasers

 This package has no built-in thermoelectric
coolers by default

 The concept shown here is based on lasers
packaged in 9 mm TO cans

 Smaller diameter 5.6 mm TO cans can be used
also for single mode lasers (<150 mW per laser)
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Option 3: two laser diode chips in the
same butterfly package

 Both lasers are combined inside the housing
and coupled into the same fiber

 This package has a built-in thermoelectric
cooler that controls both laser chips

 The package is equipped with a photodiode
to monitor the power of the lasers

 Same size as a single laser

 Both lasers can be powered individually
addressable

 Can be supplied in a butterfly package or as
a turn-key stand-alone laser with all the
electronics and drivers
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Summary of SERDS advantages

 SERDS method allows accurate and robust Raman
measurements even when Raman signal is > 100 times weaker
then the fluorescence background

 SERDS has ~ 3x better accuracy and detection limit of the
numerical filtering methods

 SERDS analysis can be, and should be performed using the
derivative spectra without reconstruction

 Using fixed wavelength sources, as opposed to tunable laser
source, is more advantageous:
 The wavelength difference is stable and always the same;

 The sources are simpler to run and control

 Two-source solution is both cheaper and more robust then a
tunable laser source

 Switching of the laser sources can be done electronically


